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Abstract. In social network research, community study is one
flourishing aspect which leads to insightful solutions to many practi-
cal challenges. Despite the ubiquitous existence of communities in social
networks and their properties of depicting users and links, they have
not been explicitly considered in information diffusion models. Previous
studies on social networks discovered that links between communities
function differently from those within communities. However, no infor-
mation diffusion model has yet considered how the community structure
affects the diffusion process.

Motivated by this important absence, we conduct exploratory stud-
ies on the effects of communities in information diffusion processes. Our
observations on community effects can help to solve many tasks in the
studies of information diffusion. As an example, we show its applica-
tion in solving one of the most important problems about information
diffusion: the influence maximization problem. We propose a community-
based fast influence (CFI) model which leverages the community effects
on the diffusion of information and provides an effective approximate
algorithm for the influence maximization problem.

1 Introduction

For many years, community study is one of the hot topics in social network
research. Studies in this area offer insightful solutions to many classic problems of
social network research, such as network evolution [14], recommendation system
[19], and expert finding [2]. Communities can be potentially helpful for studies
on diffusion of information in social networks. Previous studies found that links
between communities function differently from those within communities: friends
in the same communities have stronger links, but weaker links between friends in
different communities are crucial in the diffusion of novel information, because
these links provide more useful information to people [1,7,12].

Some key problems in the studies of information diffusion have been found
difficult to solve by traditional information diffusion methods. Studies on the
community structure of social networks may bring new ideas for solving these
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problems. For example, one of the key problems, the influence maximization
problem for the independent cascade model has been proved to be NP-hard [15].
By considering the effects of community studies on the diffusion of information,
we can easily come up with some intuitive heuristics to solve that problem more
efficiently. For example, we may utilize the community homophily to quickly
estimate the influence of users. We may also select seed nodes from different
communities to minimize the overlap and maximize the influence.

However, few existing work explicitly studied the effects of communities on
the diffusion of information, or use these effects to solve diffusion-related prob-
lems. Motivated by this important absence, we introduce the first exploratory
study on the effects of communities on information diffusion processes. By ana-
lyzing real-world datasets, we study the diffusion of information with communi-
ties. We first observe the action homophily of communities, and then introduce
the concept of role-based homophily of communities, which consists of influencee
role homophily and influencer role homophily. We discover that the role-based
homophily is significantly stronger than the action homophily.

Our findings on community effects can lead to insightful solutions to many
problems in information diffusion studies. As an example application of these
findings, we propose an approximate solution for the influence maximization
problem. We design a community-based fast influence (CFI) model based on the
influencee role homophily of communities. The CFI model applies a community
clustering method to social networks, and makes aggregations on users’ roles
as influencees. Influence maximization algorithm based on the CFI model can
efficiently select seed nodes to maximize the influence. The main contributions
are summarized in the following:
1. We conduct quantitative analyses on real-world datasets to explore the effects
of community on the diffusion of information.
2. We get valuable findings about the community effects from quantitative anal-
yses. We introduce the concept of role-based homophily of communities. These
understandings can bring new insights to the studies of information diffusion.
3. We show an example application of our findings on the influence maximiza-
tion problem. We propose a community-based fast influence (CFI) model, and
an efficient approximate influence maximization algorithm based on that model.

2 Related work

Information Diffusion Problem. Several models have been proposed for the
information diffusion processes. The independent cascade (IC) model and its
variants are most widely used information diffusion models [10,15,16,21]. The
basic idea of the IC model is: if a node in a social network becomes active, it can
make its neighbors active with a probability, and for each node the attempts of
its neighbors to activate it are independent. The influence maximization problem
has been defined for the IC model and a few other information diffusion models
[15]. Given an IC model, the problem is to select a seed set with k nodes so
that the expected number of active nodes are maximized. This problem has
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been proved to be NP-hard. The first solution to it is a greedy algorithm that
repeatedly invokes a computational expensive sampling method [15]. Heuristic
algorithms and optimized versions of the greedy algorithm have been proposed in
previous works [3,4,17]. Work in [22] proposed an heuristic algorithm which finds
influencers from communities. Different from that work, our proposed model is
built on observations on real data and baed on a substantially different idea. A
recent work in [8] defined a group-based version of the influence maximization
problem. The predefined groups studied in that work were not conceptually
equivalent to the communities studied in this paper.

Community Detection. Community detection in social networks has been
studied for years. Varieties of algorithms have been proposed. A good survey is
available in [18]. We are not going to discuss the varieties of existing community
detection methods, except for those that are related to our work in this paper.
Modularity-based methods are a major class of community detection methods.
Among these methods, the fast greedy method [5] is frequently used for com-
munity detection on large-scale networks. In [20], Rosvall et al. proposed the
infomap method. Substantially different from modularity-based methods, the
infomap method is based on flows carried by networks [20]. The SHRINK algo-
rithm in [13] is another algorithm that is related to our work. It is a parameter-
free hierarchical network clustering algorithm that combines the advantages of
density-based clustering and modularity optimization methods. Work in [23] uti-
lized social influence modeling methods in the detection of communities.

3 Preliminary

3.1 Notations

A social network G = {V,E} is a directed graph with a node set V and
an edge set E. A node vi ∈ V represents a user in the social network, while a
directed edge eij ∈ E represents a link from vi to vj .

A community C in the social network G is a subset of the node set V .
We consider non-overlapping communities in this paper. In other words, we
consider the partition of V into a set of communities C = {Ci}mi=1. Each user
in the network should belong to exactly one of the communities in C. Given a
graph G, a community detection algorithm divides the graph G into a set
of communities C. There are a lot of different community detection algorithms.
Generally, a good community detection algorithm finds a partition, so that (1)
each community is a relatively independent compartment of the graph, and (2)
nodes in the same community tend to have dense links between each other.

We follow the definition of information diffusion process in the IC model
[15]. An information diffusion process starts with a set of seed nodes that are
active at the first place. Active nodes can activate their out-neighbors in the
social network. Once a node is activated, it becomes active and can never become
inactive again. It is quite often for real applications that the information diffu-
sion processes cannot be directly observed. For example, we may observe that a
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person got infected by influenza, but we do not know from whom he got infected.
We define a cascade O = {(v1, t1), . . . , (vm, tm)} as the set of user actions dur-
ing an information diffusion process. An action (vi, ti) in O represents that the
user vi becomes active at time ti. In this paper, we focus on the scenario that the
information diffusion processes are not directly observed, but a set of cascades
is observed.

3.2 Datasets

Foursquare[9]. In this dataset, nodes represent users of the Foursquare website,
while edges represent friendship relations. Actions are defined by check-ins of
users. Each cascade corresponds to a location. When a user checks in at a location
for the first time, she becomes active for the corresponding cascade. This dataset
contains 18,107 users, 245,034 friendship relations, and 476,482 actions of 43,063
cascades.

DBLP. In this dataset, nodes represent authors, while edges represent co-author
relations. We extract a subgraph of the DBLP network with authors and papers
in the areas of data mining and machine learning. We define cascades by terms
(defined by bi-grams) in the titles of papers. When an author has a paper with a
certain term in the title for the first time, he becomes active for the corresponding
cascade. This dataset contains 6,896 users, 111,044 friendship relations, and
1,655,778 actions of 162,904 cascades.

4 Observations

In this section, we explore the community effects on information diffusion pro-
cesses via analyses on real-world datasets. We first identify communities in social
networks, and then study cascades with respect to these communities.

4.1 Identifying Communities for Information Diffusion

Communities in social networks can be defined in many different ways. To under-
stand the effects of communities on the information diffusion in general, we apply
two different community detection algorithms to the two networks, and conduct
community effect analyses for both algorithms.

The two community detection methods that we use to identify communities
are the fast greedy (FG) method [5], and the infomap (IM) method [20]. The FG
method is based on the well-adopted idea of modularity maximization, while the
IM method is a flow-based method, which is essentially different from the mod-
ularity maximization methods. We choose these two methods because (1) they
are all widely-used community detection methods that prove to be efficient and
accurate, and (2) they are based on substantially different ideas. Both methods
are implemented in the igraph network analysis package [6].
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Fig. 1. Distribution of similarity between actions of user pairs

4.2 Action Homophily of Communities

We first look into the effects that communities have on the actions of users. We
construct a vector for each user to keep the action information of that user, and
then compare the vectors between pairs of users. We check whether the users
who belong to the same community are more likely to have similar actions.

Given a set of cascades O = {O1, . . . , Om}, we define an action vector ai

for each user vi, where ai = (ai0, . . . , aim). If the user vi has an action in the
cascade Oj , we set aij to 1. Otherwise, we set aij to 0. For each pair of users vi
and vj , we calculate the cosine similarity between the action vectors ai and aj,
and then study the distribution of similarity. We consider three different cases
here: (1) There is an edge eij between vi and vj , and vi and vj belong to the same
community; (2) There is an edge eij between vi and vj , but vi and vj belong to
different communities; (3) vi and vj is an arbitrary pair of nodes, may or may
not having an edge between them. For each case, we plot the distributions of
similarity, and check whether there is any difference between the distributions.

Figure 1 shows the distributions of similarity in two datasets, with two sets
of communities in each dataset. In each setting, we observe a similar discrepancy
among the three distributions: comparing with linked pairs in different commu-
nities, linked pairs in the same communities have larger similarity; comparing
with arbitrary pairs, linked pairs have much larger similarity. Intuitively, friends
in the same communities tend to have stronger link between each other, and
they have more chances to influence each other indirectly via common friends.
The results are quite consistent for different community detection methods.

4.3 Role-Based Homophily of Communities

We have observed the action homophily of communities. However, although the
similarity between linked pairs in the same communities is relative larger than
the similarity in the other two cases, it is still quite small (typically, less than 0.3).
In this section, we introduce the role-based homophily of communities, and show
that the role-based homophily is more significant than the action homophily.

With a set of cascades O, we build a support matrix S for the influence
between users in the social networks. The element at the i-th row and the j-th
column of the matrix S is the number of potential influences from the user vi
to the user vj . We say there is a potential influence from vi to vj , if both of
them have actions in the same cascade, and the time of vi’s action is earlier
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Fig. 2. Distribution of similarity between influencer feature vectors of user pairs

than the time of vj ’s action. Formally, it is defined as: sij =| {Ok ∈ O | vi, vj ∈
V (Ok) ∧ tOk

i < tOk
j } |, where V (Ok) is the set of users that has an action in the

cascade Ok, and tOk
i is the time of vi’s action in the cascade Ok.

We define si∗, the i-th row of S, as the influencer feature vector of vi,
and s∗i, the i-th column of S, as the influencee feature vector of vi. The
influencer feature vector si∗ captures the influence that vi has on other users in
the social networks, while the influencee feature vector s∗i captures the influence
from other users to the user vi.

Similar to what we did in Section 4.2, we calculate the cosine similarity
between the influencer/influencee feature vectors, and compare the distributions.
Figures 2 and 3 show the comparison of distributions of influencer feature vector
and influencee feature vector, respectively. Similar to Figure 1, comparing with
the other two cases, the similarity is larger for the case that users are linked
and are in the same communities. There are a few new observations that are
interesting:

First, distributions of similarity between influencer/influencee feature vector
(Figures 2 and 3) show significantly larger discrepancy than the distributions of
similarity of action vector (Figure 1). This observation suggests that for users
in the same communities the role-based homophily is much stronger than the
action homophily. The effect of community in the information diffusion process is
better reflected by the roles that users play in the information diffusion process,
rather than the results of information diffusion process (whether being active or
inactive for a cascade).

Second, for friends in the same community, the similarity value of influencer
and influencee feature vectors (typically larger than 0.5) is larger than the sim-
ilarity of action vectors (typically less than 0.3). It suggests that aggregation
on the influencer/influencee feature vectors of users without significant loss of
accuracy is more feasible.

Third, the influencee-based homophily is more significant than the influencer-
based homophily, especially for the FG algorithm. This is easy to understand by
the following example: professors and students in the same research lab have sim-
ilar behaviors as influencees, because when a cascade reaches anyone in the lab,
it is very likely that cascade will reach everyone in the lab quickly, but professors
are probably much stronger influencers than students.



88 S. Lin et al.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Similarity

F
re

qu
en

cy

 

 

links within comm.
links between comm.
all pairs

(a) DBLP, IM

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Similarity

F
re

qu
en

cy

 

 

links within comm.
links between comm.
all pairs

(b) DBLP, FG

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Similarity

F
re

qu
en

cy

 

 

links within comm.
links between comm.
all pairs

(c) Foursquare, IM

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Similarity

F
re

qu
en

cy

 

 

links within comm.
links between comm.
all pairs

(d) Foursquare, FG

Fig. 3. Distribution of similarity between influencee feature vectors of user pairs

5 Community-Based Fast Influence Model

Based on the observations in Section 4, we are able to design an efficient influence
model which makes use of the community effects. The community-based fast
influence (CFI) model we propose in this section is an approximate model for
the IC model. The whole framework has three components, namely influence
decoupling, community detection, and influence maximization.

5.1 Influence Decoupling

An intuitive way to construct an approximate information diffusion model based
on community effects is to consider each community as a “super-node” and
make information propagates through “super-edges” between “super-nodes”.
The coarse-grained information diffusion model in [8] is based on a similar idea.

Although this intuitive model is simple and seems reasonable, it may not
work for our task here. When we consider a community as a “super-node”, we
have to aggregate users’ roles as influencers as well as users’ roles as influencees.
This may cause a problem: the influence maximization problem requires us to
determine how influential each user is and find the set of seed nodes that maxi-
mizes the influence. When we aggregate the roles of users as influencers, we lose
the necessary information for solving the influence maximization problem.

To avoid this problem, the CFI model considers the roles of users as influ-
encers and influencees separately. To be specific, we split each node vi in the
network G into an influencer node vouti and influencee node vini , and transform
the network into a bipartite graph Gb. In the graph Gb, there is an edge from
vouti to vinj if and only if the edge eij exists in the original graph G. We call this
transformation from the original network G to the bipartite graph Gb influence
decoupling. The left part of Figure 4(a) shows an example of influence decou-
pling. In the original graph G, there is an edge from v4 to v1. Correspondingly,
there is an edge from vout4 to vin1 in Gb. The result of influence decoupling is that
we can apply the community-based aggregation to the influencee nodes only.

If we apply the original IC model directly to the decoupled graph Gb, we
will end up with cascades with only two levels, i.e. only the nodes that are
direct out-neighbors of the seed nodes can become active. This problem can
be approximately solved by the community detection and the aggregation of
influencee nodes. Instead of limiting influence to direct out-neighbors, the CFI
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Fig. 4. (a) Inference of the CFI model. (b)-(c) Influence of different sizes of seed set

model allows users to have influence on the communities that their direct out-
neighbors belong to. Notice that we do omit the indirect influence from a user to
the nodes that are neither his out-neighbor nor in the same communities as his
out-neighbor. This is indeed a trade-off between the accuracy and efficiency, but
the loss of accuracy is actually negligible. This is because the influence between
nodes in different communities are smaller than the influence between nodes in
the same communities, and indirect influence are generally very small. We will
also show by experiment that the CFI model is a good enough approximation
to the original IC model.

5.2 Identifying Communities

We now discuss the community detection algorithm. As we have discussed in the
last section, users in the same community should be similar influencees. To iden-
tify communities so that users in the same communities are similar as influencees,
we design an agglomerative clustering algorithm. It starts with clusters with sin-
gle users, and iteratively merges clusters together based on similarity between
clusters. As shown in Figure 4(a), the clustering procedure is conducted on the
original graph G, but the similarity is defined by users’ roles as influencees,
and the communities detected by the algorithm will finally be applied to the
influencee nodes in the decoupled graph Gb.

Similarity. The similarity between two clusters is defined as the cosine similarity
between their incident influence probability vectors. Let pi→j be the probability
that vi influences vj directly or indirectly (i.e. the probability that vj becomes
active if vi is the single seed node). For a cluster C = {vi1 , . . . vinC

}, we define
the influence that user vj on C as:

qj→C =
{

1
nc

∑nC

k=1 pj→ik if ej,ik ∈ E for some ik ∈ C
0 otherwise.

(1)

where nC is the number of nodes in the cluster C.
We define incident influence probability vectors of community C as qC =

(q1→C , . . . qn→C), and the similarity between two clusters C1 and C2 as sim(C1,
C2) = qC1 · qC2/(‖qC1‖‖qC2‖).
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Influence Probability Estimation. Similar to the learning algorithm for the
IC model in [10], given a set of cascades O, we estimate the influence probability
pi→j from cascades by the equation as follows:

p̂i→j =
sij
si

=
| {Ok ∈ O | vi, vj ∈ V (Ok) ∧ tOk

i < tOk
j } |

| {Ok ∈ O | vi ∈ V (Ok)} |
(2)

Since that vi becomes active earlier than vj does not necessarily imply that vi
directly or indirectly influences vj , p̂i→j is not an unbiased estimator of pi→j .
However, it is still a good enough estimator for the CFI model.

Community Detection and Influence Aggregation. The purpose of com-
munity detection in the CFI model learning is to aggregate users who play sim-
ilar roles as influencees, while keep the accuracy of the original IC model. To
serve this purpose, we adopt a community detection strategy that is similar to
the algorithm in [13]. By iteratively merging clusters into larger one, we get a
sequence of super-graph G0, G1, G2, . . .. Each node in these super-graphs corre-
sponds to a cluster. The algorithm starts with graph G0, in which each cluster
contains a single user. In each step t, we find from Gt connected subgraphs that
contain similar nodes, and merge these subgraphs to generate a new super-graph
Gt+1. We repeat these steps, until the similarity between any two neighbors in
Gt are below a threshold θ.

Let C(t) = {C1, . . . Cm(t)} be the set of clusters at the t-th iteration. We say
two clusters C1 and C2 are neighbors, if there exist vi ∈ C1 and vj ∈ C2, s.t. edge
eij or eji exists. For a pair of connected clusters, we say they are a mutually
most similar pair (ms-pair) with similarity ε (denoted by C1 ↔ε C2), if
ε = sim(C1, C2) = maxCi∈N(C1) sim(C1, Ci) = maxCi∈N(C2) sim(C2, Ci), where
N(Ci) is the set of neighbors of Ci.

We define a ms-subgraph as a maximal connected subgraph of Gt that
are connected by ms-pairs. Formally, a graph D is a ms-subgraph of Gt with
similarity ε if and only if (1) for any two nodes Ci, Cj ∈ D, there exist a path
< Ci, C1 . . . Ck, Cj > in D, s.t. Ci ↔ε C1, C1 ↔ε C2,. . . ,Ck−1 ↔ε Ck, Ck ↔ε Cj ;
(2) for any nodes Ci �∈ D and Cj ∈ D, Ci and Cj are not a ms-pair. By this
definition, the graph can be partitioned into ms-subgraphs (some ms-subgraphs
may contain only one single node). By merging ms-subgraphs into new nodes,
the original super-graph can be reduced into a smaller super-graph.

At the iteration t, we first find out all the ms-subgraphs of Gt, and then merge
each ms-subgraph D that contains more than one nodes and has similarity ε ≥ θ
into a new node. The new node is a neighbor to any node that was a neighbor
of any node in D, and the similarity between the new nodes and its neighbors
need to be recalculated. The algorithm stops when the similarity between each
linked nodes are less than the threshold θ, and the clusters at that point of time
are taken as communities.

5.3 CFI-Based Influence Maximization Algorithm

In this subsection, we show how we can design a CFI-based algorithm for the
influence maximization of the IC model. The influence maximization problem
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is defined as follows: Given an IC model and an integer k > 0, find a set of k
seed nodes, so that the influence of the seed nodes is maximized. The standard
method to solve this problem is a greedy algorithm [15]. It starts with finding
one seed node that maximizes the influence, and then adds a second node to
the seed node set so that the increase of influence is maximized. In this way,
it repeatedly adds nodes to the seed node set, until it gets k seed nodes. This
greedy algorithm is very time-consuming, because in each step it uses the Monte
Carlo method to evaluate all the remaining nodes. Optimized versions of the
greedy algorithm have been proposed in [17] and [11], and heuristic algorithms
have been proposed in [3]. These algorithms also use sampling for the evaluation
of nodes. We can get a new heuristic algorithm based on the CFI model. This
new heuristic algorithm does not involve random sampling, so it is faster than
the existing algorithms, especially when the number of seed nodes k is large.

The CFI-based influence maximization algorithm also adopts a greedy frame-
work. In each step t, the node that can maximize the influence increase is
selected. The problem is how we can estimate the influence increase using the
CFI model. When t = 1, the problem is reduced to estimating the influence of
each single node. Let C = {C1, . . . Cm} be the set of communities in the CFI
model. We estimate the influence of a user vi as Inf({vi}) =

∑
C∈C ncqi→C ,

where nc is the number of users in the community C.
Once we select the node with the greatest influence to be the first seed

node, we cannot simply select the second most influential node to be the second
seed node, because the nodes activated by the first node and the second node
may overlap. We need to deduct the number of nodes that has already been
activated by the first node. To do that, we decrease the number of nodes from
each community by the estimated influence of the first node vi1 . Formally, we
let n1

c = nc−ncqi1→C , which is the expected number of nodes in the community
C that are not activated by the influence of vi1 , and then we select the second
node vi2 by maximizing the increase of influence: ΔInf(v) = Inf({vi1 , v}) −
Inf({vi1}) =

∑
C∈C n

1
cqi2→C . For t = 3, . . . , k, we can repeat the above step

to select vi3 , . . . , vik . Generally, we select vit by maximizing
∑
C∈C n

t−1
c qit→C ,

where nt−1
c = nt−2

c − nt−2
c qit−1→C .

6 Experiment

6.1 Experiment Setup

We use the DBLP and Foursquare networks described in Section 3 for the exper-
iment. For each network, we construct an IC model by assigning diffusion prob-
ability 1 − e−0.01c to each edge. A similar method for model construction has
been used in [4]. For the DBLP network, c is the number of papers coauthored by
the two authors. For the Foursquare network, c is the number of locations that
both users visited. We do not construct the ground-truth models by learning the
diffusion probabilities directly from the actions in the datasets because we want
to avoid the inaccuracy caused by model learning algorithm.
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We then sample each ground truth IC model to get 5,000 cascades, each
with 10 seed nodes and use the sampled cascades to learn the CFI model. For
the baselines, since they are all based on the IC model, we directly apply the
influence maximization algorithms on the ground truth model. We evaluate the
influence of seed nodes by sampling the ground truth model 10,000 times to get
the average number of active nodes. We compare the following algorithms:

– CFIGreedy The CFI-based influence maximization algorithm with θ = 0.4.
– ICGreedy The greedy influence maximization of IC model with the CELF++

optimization [11]. We take a sample size of 10, 000 to estimate the influence.
– Degree The heuristic algorithm that selects the nodes with the largest

weighted degree. The weighted degree of a node is the sum of the diffusion
probabilities over the out-going edges.
– DegreeDiscount The degree discount heuristics based on the degree heuris-

tics [4]. The basic idea is to discount the degree for users whose friends have been
selected as seed nodes.
– Random Randomly selecting seed nodes.

6.2 Results

Effectiveness Results for Influence Maximization. First, we present the
effectiveness results of the influence maximization algorithms in terms of the
number of seed nodes. We test the effectiveness of each algorithm with increas-
ing number of seed nodes. The results of the DBLP and Foursquare datasets are
illustrated in Figures 4(b) and 4(c), respectively. In each case, we illustrate the
number of seed nodes on the X-axis, and the influence of seed nodes on the Y-
axis. For the Foursquare data, CFIGreedy performs worse than ICGreedy when
the size of the seed set is small, but does better than ICGreedy when the size is
greater than 25. This is a very interesting observation. Although the CFI model
is designed to be an approximate model for the IC model, the greedy algorithm
of the CFI model does not necessarily performs worse than the greedy algorithm
of the IC model. This is because the CFI model considers the community struc-
ture of social networks, and the consideration of community structure may favor
combinations of seed nodes that cover more communities. For the DBLP dataset,
CFIGreedy is less effective than ICGreedy. However, the difference is not very
significant, especially when we consider the fact that CFIGreedy is signifi-
cantly faster. Besides, CFIGreedy consistently outperforms DegreeDiscount,
Degree and Random. Notice that although DegreeDiscount is a simple heuris-
tic method, previous work showed that it is a very effective method that nearly
matches the performance of ICGreedy [4].

Efficiency Results for Influence Maximization. We also tested the effi-
ciency of influence maximization methods with varying number of seed nodes.
The efficiency results for the DBLP and Foursquare datasets are illustrated
in Figures 5(a) and 5(b), respectively. The X-axis denotes the number of seed
nodes, whereas the Y-axis denotes the running time. Since heuristics as Random,
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Fig. 5. (a)-(b) Running time with different sizes of seed set; (c)-(d) Effects of θ

Degree, and DegreeDiscount are obviously very fast, we only show the run-
ning time of CFIGreedy and ICGreedy. As illustrated in the figures, influence
maximization based on CFIGreedy is several orders of magnitudes faster than
ICGreedy with CELF++ optimization. We also add together the time spent
on the learning of the CFI model and the running time of CFIGreedy to get a
total time for the influence maximization on the CFI model, and illustrate the
total time as “CFI(+learning time)” in the figures. Even when the learning time
is added, the total running time for the CFI model is still significantly smaller
the running time of ICGreedy. For example, for the DBLP dataset, it takes
ICGreedy 9,079 seconds to find 60 seed nodes, while the total running time of
the CFI model is 34 seconds. Notice that, in real applications, the IC models
also need to be learned from user actions, and the running time of ICGreedy
should also be added with the learning time of the IC model.

Parameter Sensitivity. Finally, we tested the sensitivity of the CFI-based
influence maximization with the clustering threshold θ. Figure 5(c) shows the
influence of seed nodes selected by the CFI model with varying θ. We illustrate
the value of θ on the X-axis, and the influence of seed nodes on the Y-axis.
Figure 5(d) shows the total running time of influence maximization with varying
θ. We illustrate the value of θ on the X-axis, and the total running time of the
influence maximization (the running time of model learning plus the running
time of CFIGreedy) on the Y-axis. In each case, the number of seed nodes is
set to 50. We show the results on the Foursquare dataset, while similar trends
are observed on the DBLP dataset. When the threshold θ decreases, the running
time increases, because the agglomerative clustering takes more steps when θ is
smaller. It is an interesting observation that the influence does not monotonically
increases when θ decreases. When θ is too large, the size of communities are
very small, so the CFI model omits too much indirect influence. When θ is too
small, the users in the same community do not have enough similarity between
each other. Both cases cause loss of accuracy. Nevertheless, we notice that the
variation of influence is not significant. The Y-axis of Figure 5(c) does not start
at 0. When θ varies from 0.3 to 1.0, the variation of influence is within ±1.5%.

7 Conclusion

In this paper, we explore the effects of communities on the information diffu-
sion processes. We quantitatively analyze the real-world information diffusion
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datasets to get insightful findings on the community effects. As an application
of these findings, we propose the CFI model, which is substantially different
from existing approximate algorithms. Experiment shows that the CFI-based
influence maximization algorithm can get comparable effectiveness as influence
maximization algorithms based on the IC model, but is significantly faster. Our
work sheds light on the effects of communities in the diffusion of information,
and brings a new idea to the approximation of information diffusion processes.
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1115234, and OISE-1129076, Google Research Award, and the Pinnacle Lab at Singa-
pore Management University.

References

1. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in
information diffusion. In: WWW (2012)

2. Balog, K., Azzopardi, L., de Rijke, M: Formal models for expert finding in enter-
prise corpora. In: SIGIR (2006)

3. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: KDD (2010)

4. Chen, W., Wang, Y.: Efficient influence maximization in social networks. In: KDD
(2009)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6 Pt 2), 066111 (2004)

6. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
Inter. Journal, Complex Systems, 1695 (2006)

7. Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development.
Science 328(5981), 1029–1031 (2010)

8. Eftekhar, M., Ganjali, Y., Koudas, N.: Information cascade at group scale. In:
KDD (2013)

9. Gao, H., Tang, J., Liu, H.: Exploring social-historical ties on location-based social
networks. In: ICWSM (2012)

10. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: WSDM (2010)

11. Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm
for influence maximization in social networks. In: WWW (2011)

12. Granovetter, M.S.: The Strength of Weak Ties. The American Journal of Sociology
78(6), 1360–1380 (1973)

13. Huang, J., et al.: Shrink: a structural clustering algorithm for detecting hierarchical
communities in networks. In: CIKM (2010)

14. Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks.
Phys. Rev. E 64, 046132 (2001)

15. Kempe, D., Kleinberg, J.: Maximizing the spread of influence through a social
network. In: KDD (2003)

16. Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social net-
works. In: KDD (2010)

17. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Vanbriesen, J., Glance, N.:
Cost-effective outbreak detection in Networks. In: KDD (2007)



Understanding Community Effects on Information Diffusion 95

18. Newman, M.E.J.: Modularity and community structure in networks. PNAS
103(23), 8577–8582 (2006)

19. Reddy, P.K., Kitsuregawa, M., Sreekanth, P., Rao, S.S.: A graph based approach to
extract a neighborhood customer community for collaborative filtering. In: Bhalla,
S. (ed.) DNIS 2002. LNCS, vol. 2544, pp. 188–200. Springer, Heidelberg (2002)

20. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. The European
Physical Journal Special Topics 178(1), 13–23 (2009)

21. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time informa-
tion diffusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio,
T. (eds.) ACML 2009. LNCS, vol. 5828, pp. 322–337. Springer, Heidelberg (2009)

22. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for
mining top-K influential nodes in mobile social networks. In: KDD (2010)

23. Zhou, Y., Liu, L.: Social influence based clustering of heterogeneous information
networks. In: KDD (2013)




